AIA 2030 OVERVIEW

• What is AIA 2030

• Energy Use Targets

• AIA 2030 Reporting Tool

• ARC’s most successful projects

• Net Zero Energy projects in the US

• More Net Zero Energy projects are on the boards

• Common concepts

Photo Credit: HOK
In the United States:

The building sector uses 49% of all energy produced.

Buildings are expected to Increase Fossil Fuel Consumption by 6%, half of the overall increase, between 2010 & 2030.

In 2009 Buildings were Responsible for 46.9% of CO₂ Emissions almost as much as transportation and industry combined.

We renovate and build approximately 10 BILLION SF of space a year.

By 2035 approximately 75% of the built environment will either be new or renovated space.

ARC Has Designed

16 MILLION SF

And Counting...
• ARC has committed to improve office operations to follow AIA 2030 guidelines.

• ARC has committed that EVERY project will follow AIA 2030 guidelines.

• A Net Zero Energy building produces at least as much energy on-site as it uses.

• Today – Improve on baseline EUI by 60%.

• 2030 – Reduce energy use to maximum amount that can be produced on-site.
Already in Place

- Single Stream Recycling.
- Composting.
- Use of Public Transit.
- Teleconferencing / Go To Meeting.

Ongoing studies

- Office energy use.
- Office related travel.
ENERGY USE INTENSITY (EUI)

Establish Target During Initial Design

- EUI: Total Energy Consumed in One Year Divided by Gross Square Footage.
- For AIA 2030 this should be expressed as kBtu/SF/Yr.
- Establish baseline to beat.
- Site Energy not Source Energy.
- CBECS / Energy Star Target Finder / Labs21.
- Use Energy Modeling to Keep EUI on Target.
ENERGY USE INTENSITY (EUI)

Commercial Building Energy Consumption Survey (CBECS)

<table>
<thead>
<tr>
<th>2003 CBCECS National Median Source</th>
<th>Energy Use and Performance Comparisons by Building Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Use Description</td>
<td>Median Source EUI (kBtu/Sqft)</td>
</tr>
<tr>
<td>Education</td>
<td>144</td>
</tr>
<tr>
<td>K-12 School</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>College/University (campus level)</td>
<td>244</td>
</tr>
<tr>
<td>Food Sales</td>
<td>570</td>
</tr>
<tr>
<td>Grocery Store/Food Market</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Convenience store (with or without gas station)</td>
<td>657</td>
</tr>
<tr>
<td>Food Service</td>
<td>575</td>
</tr>
<tr>
<td>Restaurant/Cafeteria</td>
<td>434</td>
</tr>
<tr>
<td>Fast Food</td>
<td>1170</td>
</tr>
<tr>
<td>Patient Health Care (Hospital)</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Lodging</td>
<td>163</td>
</tr>
<tr>
<td>Dormitory/Fraternity/Sorority</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Hotel/Motel/Inn</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Mall (Strip and Enclosed)</td>
<td>247</td>
</tr>
<tr>
<td>Nursing/Assisted Living</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Office</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Outpatient and Health Care</td>
<td>163</td>
</tr>
<tr>
<td>Clinic/Other Outpatient Health</td>
<td>194</td>
</tr>
<tr>
<td>Medical Office</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Public Assembly</td>
<td>89</td>
</tr>
<tr>
<td>Entertainment/Culture</td>
<td>94</td>
</tr>
<tr>
<td>Library</td>
<td>246</td>
</tr>
<tr>
<td>Recreation</td>
<td>100</td>
</tr>
<tr>
<td>Social/Media</td>
<td>71</td>
</tr>
<tr>
<td>Public Order and Safety</td>
<td>161</td>
</tr>
<tr>
<td>Fire/Police Station</td>
<td>146</td>
</tr>
<tr>
<td>Service (Vehicle Repair/Service, Postal Service)</td>
<td>96</td>
</tr>
<tr>
<td>Storage/Shipping/Non-Refrigerated Warehouse</td>
<td>28</td>
</tr>
<tr>
<td>Refrigerated Warehouse</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Religious Worship</td>
<td>Use EPA’s Target Finder / Portfolio Manager</td>
</tr>
<tr>
<td>Retail (non-Mall Stores, Vehicle Dealerships)</td>
<td>139</td>
</tr>
<tr>
<td>Other</td>
<td>127</td>
</tr>
</tbody>
</table>

- Survey of 6,000 buildings over 1,000 SF.
- Performance Targets
- Space Types
ENERGY USE INTENSITY (EUI)

Energy Star Target Finder

- Uses CBEC data.
- By using project specific data, provides a more accurate EUI Target.
- TUSDM Level 2 has an estimated EUI of 51, but 38 was needed to achieve current AIA 2030 goals.
- Energy Performance Rating of 75 or higher allows you to apply to Earn Energy Star Designation for your project.
Laboratories for the 21st Century

- Labs21 Energy Benchmarking Tool.
- Database of 200+ facilities created by the EPA, DOE, LBNL and NREL. Allows users to add data.
- Lab Area: Spaces requiring 100% outside air. Do NOT include offices, mechanical areas, toilets, corridors, stairs, etc.
- Ratio of Lab Area to Gross Area.
- Occupancy.
- Lab Type and Lab Use.
- Climate.
- Generates Average EUI for similar Lab facilities.
- Labs21 has more tools to help find ways to reduce energy use.
ENERGY USE INTENSITY (EUI)

Energy Model

- Targets are only a starting Point.
- Without an Energy Model, EUI reduction will be based on the Design Energy Code. Additional reductions for LEED are not accounted for.
- Energy Models should be built and maintained by someone qualified to understand both what goes into the model, and the data that is returned.

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Proposed Design</th>
<th>Baseline Design</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy Use</td>
<td>Cost</td>
<td>Energy Use</td>
</tr>
<tr>
<td>Electricity</td>
<td>4,689,857</td>
<td>$702,959</td>
<td>5,963,284</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>148,856</td>
<td>$220,307</td>
<td>235,527</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal (Model Output):</td>
<td>30,887 (MWh/year)</td>
<td>$923,266</td>
<td>43,899 (MWh/year)</td>
</tr>
</tbody>
</table>

On-Site Renewable Energy			

Exceptional Calculations			

<table>
<thead>
<tr>
<th>Proposed Design</th>
<th>Baseline Design</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Use</td>
<td>Cost</td>
<td>Energy Use</td>
</tr>
<tr>
<td>30,887 (MWh/year)</td>
<td>$923,266</td>
<td>43,899 (MWh/year)</td>
</tr>
</tbody>
</table>

Table 1.8.2(b) - Energy Cost and Consumption by Energy Type - Performance Rating Method Compliance
AIA 2030 REPORTING TOOL

General Project Information

- We report to the AIA every year on how our projects are expected to perform.
- Project Managers or another designated point person are responsible for data.
- What you need and where to find it.
- **Reporting Tool**
- Possible integration into Vision system for next year.

AIA 2030 Commitment Reporting Tool - DESIGN YEAR 2011 Worksheet

Fill in all of these general project information sections.

Choose the description from the drop down menu here that best describes your project.
AIA 2030 REPORTING TOOL

Energy Use Data

- Whole Building?
- Does your project have an Energy Model?
- What is the Design Energy Code?
- Will the Client Collect Energy Use Data?
- OR Interior Only?
- What is the Lighting Power Density (LPD)?
- Was the space by space LPD method used?
- These numbers combined with the project location, type and GSF generate the EUI Percent Reduction from Average.
AIA 2030 REPORTING TOOL

Internal Use Information

- This is not reported to the AIA.
- Information we currently track:
 - Who provided the information and when.
 - LEED Certification (Target).
 - Other relevant information
 - Justify how your project is classified.
 - Indicate EUI reducing features.
- Suggestions?
AIA 2030 REPORTING TOOL

2010 - 2011 Report

- Without an Energy Model, EUI reduction is based on the Design Energy Code. Additional reductions for LEED are not accounted for.
- By these standards most of our projects didn’t come close to the AIA 2030 goal of 60% reduction in energy use.
ARCHITECTURAL RESOURCES
Cambridge

HOW ARE WE DOING?

NMR Center
Raynham, Massachusetts
46.0% Reduction From Average
HOW ARE WE DOING?

UMMS Albert "Albie" Sherman Center
Worcester, Massachusetts
50.3% Reduction From Average
HOW ARE WE DOING?

Greenwich Country Day School New Upper School
Greenwich, Connecticut
55.3% Reduction From Average

Photo Credit: Robert Benson
HOW ARE WE DOING?

Greenwich Country Day School Performing Arts Center
Greenwich, Connecticut
62.6% Reduction From Average

Photo Credit: Robert Benson
NET ZERO ENERGY FACILITIES IN THE US

Oberlin College Lewis Center for Environmental Studies
Oberlin, Ohio

13,600 SF using 32.2kBtu/SF/Yr
Completed in 2000 for $357/SF (Construction Cost)

Photo Credit: PRX.org
NET ZERO ENERGY FACILITIES IN THE US

North Shore Community College Allied Health Building
Danvers, Massachusetts
Architect: DiMella Shaffer Associates, Engineer: RDK
58,700 SF
Completed in 2011 for $34.4M (Project Cost)

Photo Credit: DiMella Shaffer
NET ZERO ENERGY FACILITIES IN THE US

Lady Bird Johnson Middle School
Irving, Texas
152,000 SF using 36.5kBtu/SF/Yr
Completed in 2011 for $30M (Project Cost)
NET ZERO ENERGY FACILITIES IN THE US

National Renewable Energy Laboratory (NREL) Research Support Facility
Golden, Colorado
Architect: RNL, Engineer: Stantec
220,000 SF using 35kBtu/SF/Yr
Completed in 2010 for $259/SF (Construction Cost)

Photo Credit: Dennis Shroeder
NET ZERO ENERGY FACILITIES IN THE US

UC Davis West Village
Davis, California
Architects: Lim Chang Rohling & Associates, MVE Institutional, and Studio E Architects
315 Apartments, 42,500 SF of Retail
Phase 1 Completed in 2011 for $280M, final completion in 2013

Photo Credit: Greg Urquiaga
NET ZERO ON THE HORIZON

Cornell University Tech Campus – Main Academic Building
New York, New York
Architect: SOM
150,000 SF

Photo Credit: Cornell University
NET ZERO ON THE HORIZON

Oregon Sustainability Center
Portland, Oregon
Architect: Sera Architects and GBD Architects
150,000 SF
Estimated $62M (Project Cost)

Photo Credit: Oregon Sustainability Center
COMMON CONSIDERATIONS

DESIGN

- Focus on Energy Conservation
- Narrow Floor Plate
- Sun-Shading / Day-lighting
- Orientation on site
- Thermal walls
- Ventilation
- Minimize HVAC
- “Continuous” Energy Models
- Design reviews to include energy conservation / generation strategies
- Introduce Heat re-capture, PV, Geothermal, Wind, or other renewable energy sources.

PROJECT FEASABILITY

- Partnerships with Corporations and Research Institutions
- Grants / Rebates
- Consultants for Building Envelope, MEP, Lighting, Landscape, Sustainable Design
- Client
Architectural Resources
Cambridge

Five Cambridge Center
Cambridge, MA 02142
tel 617.547.2200
fax 617.547.7222
www.arcusa.com